Math 245C Lecture 7 Notes

Daniel Raban

April 15, 2019

1 Bounds on Kernel Operators

1.1 Strengthening of a previous theorem

We will prove a stronger version of the following theorem.

Theorem 1.1. Let (X, \mathcal{M}, μ) and $(\mathcal{Y}, \mathcal{N}, \nu)$ be σ -finite measure spaces. Let $K : X \times Y \to \mathbb{R}$ be $\mathcal{M} \otimes \mathcal{N}$ -measurable, and let \mathcal{F} be the set of $f : Y \to \mathbb{R}$ measurable functions such that $K(x, \cdot)f \in L^1$ for μ -a.e. $x \in X$. For $f \in \mathcal{F}$, define

$$Tf(x) = \int_Y K(x, y) f(y) \, d\nu(y).$$

Assume there exists C > 0 such that

$$\int_{Y} |K(x,y)| \, d\nu(y) \le C$$

for μ -a.e. $x \in X$ and

$$\int_X |K(x,y)| \, d\mu(x)$$

for ν -a.e. $y \in Y$. The the following conclusions hold:

- 1. For any $1 \leq p < \infty$, $L^p(\nu) \subseteq \mathcal{F}$.
- 2. There exists C_p such that $||Tf|| \leq C_p ||f||_p$ if $f \in L^p(\nu)$.

Recall that if A > 0, then

$$\phi_A(z) = \begin{cases} z & |z| < A\\ \frac{z}{|z|}A & |z| \ge A \end{cases}$$

is a function in $C(\mathbb{C},\mathbb{C})$, and $\phi_A|_{\mathbb{R}} \in C(\mathbb{R},\mathbb{R})$. Observe that

$$z - \phi_A(z) = \begin{cases} 0 & |z| < A \\ \frac{z}{|z|}(|z| - A) & |z| \ge A. \end{cases}$$

We shall use the notation

$$K_1 = K_1^A = K - \phi_A(K), \qquad K_2 = K_2^A = \phi_A(K).$$

Denote as T_i (i = 1, 2) the operators associated to K_i (i = 1, 2).

Theorem 1.2. Let $1 \le p < \infty$ and c > 0. Assume that $[K(x, \cdot)]_q \le C$ for μ -a.e. $x \in X$ and $[K(\cdot, w)]_w \le C$ for ν -a.e. $y \in Y$.

- 1. If $1 \leq p < \infty$, $L^p(\nu) \subseteq \mathcal{F}$.
- 2. If $1 , then there exist <math>B_1 > 0$ and $B_p > 0$ such that $[Tf]_q \leq B_1 ||f||_1$ and $||Tf||_r \leq CB_p ||f||_p$, which means T is weak type (1,q) and strong type (p,r), provided that 1/r + 1 = 1/p + 1/q.

Proof. Let $f \in L^p(\nu)$; we want $f \in \mathcal{F}$. If f = 0, we are done. If $f \neq 0$, it suffices to show that $f/\|f\|_p \in \mathcal{F}$. So we need only show that if $\|f\|_p = 1$, then $f \in \mathcal{F}$. For the second conclusion, let $f \in L^p$. If f = 0, then the conclusion holds. If $f \neq 0$, then we can again reduce to the case $\|f\|_p = 1$ by passing to $f/\|f\|_p$. So it suffices to prove both parts when $\|f\|_p = 1$.

Let $f \in L^p(\nu)$ be such that ||f|| = 1. Let q' be the dual conjugate of q, and let p' be the dual conjugate of q. We have 1/r = 1/p + 1/q - 1 = 1/p - 1/q', and similarly, 1/r = -1/q' + 1/q. Since r > 0, 1/p > 1/q', and 1/q > 1/p'. So q' > p, and p' > q. We have

$$\alpha^q \lambda_{K(x,\cdot)}(\alpha) \le C, \qquad \alpha^q \lambda_{K(\cdot,y)}(\alpha) \le C.$$

To show that $|K(x, \cdot)f| \in L^1(\nu)$, we are going to show that $|K_i(x, \cdot)f| \in L^1(\nu)$ for i = 1, 2. We have

$$\int_{Y} |K_1(x,y)| \, d\nu(y) = \int_0^\infty \lambda_{K_1(x,\cdot)}(\alpha) \, d\alpha = \int_0^\infty \lambda_{K(x,\cdot)}(\alpha+A) \, d\alpha$$
$$= \int_A^\infty \lambda_{K(x,\cdot)}(\alpha) \, d\alpha \le C \int_A^\infty \alpha^{-q} \, d\alpha = C \frac{A^{1-q}}{q-1}.$$

The similar identity holds for $\int_X |K_1(x,y)| d\mu(x)$, so we have

$$\int_{Y} |K(x,y)| \, d\nu(y), \int_{X} |K(x,y)| \, d\mu(x) \le C \frac{A^{1-q}}{q-1}.$$

We have

$$\int_{Y} |K_2(x,y)|^{p'} d\nu(y) = p' \int_0^\infty \lambda_{K_2(x,\cdot)}(\alpha) \alpha^{p'-1} d\alpha = p' \int_0^A \lambda_{K(x,\cdot)}(\alpha) \alpha^{p'-1} d\alpha$$
$$\leq p' \int_0^A C \alpha^{p'-1-q} d\alpha = C \frac{p'}{p'-q} A^{p'-q}.$$

By symmetry, we get that

$$\int_{Y} |K_2(x,y)|^{p'} d\nu(y), \int_{X} |K_2(x,y)|^{p'} d\mu(x) \le C \frac{p'}{p'-q} A^{p'-q}.$$

Apply Hölder's inequality to conclude that

$$\int_{Y} |K_2(x,y)f(x)| \ d\nu(y) \le \left(\int_{Y} |K_2(x,y)|^{p'} \ d\nu(y)\right)^{1/p'} \|f\|_p \le \left(C\frac{p'}{p'-q}\right)^{1/p'} A^{1-q/p'}$$

So $K_2(x, \cdot)f \in L^1(\nu)$. Using the previous theorem, we conclude that $K_1(x, \cdot)f \in L^1(\nu)$. In conclusion, $K(x, \cdot)f \in L^1(\nu)$, which implies that $L^p(\nu) \subseteq \mathcal{F}$.

Choosing an appropriate A: By our inequality,

$$||T_2f|| \le \left(C\frac{p'}{p'-q}\right)^{1/p'} A^{1-q/p'}$$

Choose A such that

$$\left(C\frac{p'}{p'-q}\right)^{1/p'}A^{q/r} = \left(C\frac{p'}{p'-q}\right)^{1/p'}A^{1-q/p'} = \frac{\alpha}{2}.$$

That is, we choose

$$A = \left[\left(C \frac{p'}{p' - q} \right)^{1/p'} A^{q/r} \right]^{r/q}.$$

By assumption, $||T_2f|| \leq \alpha/2$, and so $\lambda_{T_2f}(\alpha/2) = 0$.

Next time, we will finish the proof.